SimpleDAQ UART Commands

Baudrate=115200

A) READ

Device countinously sends four string formated numbers (n_0-n_3) followed by a carriage return and line feed characters. Value are separated by semicolon (;) and correspond to A\D converter channels. $n_0;n_1;n_2;n_3\r\n$

B) WRITE

Digital/PWM outputs

<u>Command</u>: **DIGxy** x=[0,2], y=[0,255] Functionality: Sets selected digital/PWM output value

x =0	=>	digital pin 0 (D0)
<mark>x</mark> =1	=>	digital pin 1 (D1)
<mark>x</mark> =2	=>	digital pin 2 (D2)
у	=>	value, duty cycle, [0,255] => [0, 100%]

Digital potentiometer

Command: POTRESET

Functionality: Resets digital potentiometer wiper position, reset position is 50 (in the middle)

Command: **POTSETx** x=[0,99] Functionality: Sets digital potentiometer wiper position

D\A Converter

<u>Command</u>: **DACx** x=[0,4095] <u>Functionality</u>: Sets D\A converter output voltage, reference voltage is power supplay voltage VCC

A\D Converter

<u>Command</u>: **ADCMODEx x**=[0,1] <u>Functionality</u>: Sets A\D operational mode

x =0	=>	single ende	d operational	mode	(ADC0-ADC3

x=1 => differential operational mode (DIFF0-DIFF1)

<u>Command</u>: **ADCCHNSx** x=0bc₃c₂c₁c₀=[0,15] <u>Functionality</u>: Selects A\D converter channel

> c₀ if set => ADC0 on / DIFF0 on in differential mode c₁ if set => ADC1 on / DIFF1 on in differential mode c₂ if set => ADC2 on c₃ if set => ADC3 on

<u>Command</u>: **ADCGAINx x**=[0,5] <u>Functionality</u>: Sets A\D converter gain (FSR-Full Scale Range)

x =0	=>	Gain=2/3,	FSR=+/- 6.144V,	LSB=0.1875mV (default)
<mark>x</mark> =1	=>	Gain=1,	FSR=+/- 4.096V,	LSB=0.125mV
<mark>x</mark> =2	=>	Gain=2,	FSR=+/- 2.048V,	LSB=0.0625mV
<mark>x</mark> =3	=>	Gain=4,	FSR=+/- 1.024V,	LSB=0.03125mV
<mark>x</mark> =4	=>	Gain=8,	FSR=+/- 0.512V,	LSB=0.015625mV
<mark>x</mark> =5	=>	Gain=16,	FSR=+/- 0.256V,	LSB=0.0078125Mv

Function generator

<u>Command</u>: **:Fxy;** x=[1,2], y=[0,10000000] <u>Functionality</u>: Sets function generator frequency

<mark>x</mark> =1	=>	Channel 1
<mark>x</mark> =2	=>	Channel 2
у	=>	Frequency in Hz

<u>Command</u>: :**Pxy;** x=[1,2], y=[0,3600] <u>Functionality</u>: Sets function generator phase

<mark>x</mark> =1	=>	Channel 1
<mark>x</mark> =2	=>	Channel 2
у	=>	Phase in tens of degrees

<u>Command</u>: **:OSx;** x=[O,S,T,Q] <u>Functionality</u>: Sets function generator output signal

x=0	=>	OFF
x=S	=>	Sine
x=T	=>	Triangle
x=Q	=>	Square

<u>Command</u>: :**OFx;** x=[1,2] <u>Functionality</u>: Sets function generator output frequency channel

<mark>x</mark> =1	=>	Output frequency from Channel 1
<mark>x</mark> =2	=>	Output frequency from Channel 2

<u>Command</u>: :**OPx;** x=[1,2] <u>Functionality</u>: Sets function generator output phase channel

<mark>x</mark> =1	=>	Output phase from Channel 1
<mark>x</mark> =2	=>	Output phase from Channel 2